021-86023253|021-86023287
021-77093755|021-77093752
تهران:م آرژانتین خ احمد قصیر(بخارست) خ یکم پ14

برچسب جریان مستقیم

معکوس کردن و برگرداندان ولتاژ در یو پی اس

معکوس کردن و برگرداندان ولتاژ در یو پی اس

معکوس کردن و برگرداندان ولتاژ در یو پی اس : در کل در مورد الکتریسیته دو نوع الکتریسیته وجود دارد. الکتریسیته با جریان مستقیم و الکتریسیته با جریان متناوب که هرکدام انواع، مزایا و معایبی خاص دارند. بیشتر تجهیزات برقی فقط با یکی از این دونوع الکتریسیته کارمیکنند. بنابراین بسیار سودمند خواهد بود اگر بتوانیم الکتریسیته را ازیک نوع به نوع دیگرتبدیل کنیم. خوشبختانه وسایلی موجود است که ما را قادرمیسازد براحتی این کاررا انجام دهیم.

فرآیند تبدیل برق متناوب به مستقیم “conversion” نامیده میشود.

(اگرچه این یک عبارت غیردقیق است زیرا تغییر یک ولتاژ مستقیم به ولتاژ مستقیم دیگر نیز کانورژن نامیده میشود ولی به هرحال منظورما را میرساند) وسایلی که این کارراانجام میدهند converter یا برگرداننده نامیده میشوند ولی غالباً آنها رابنام adapter (سازگارکننده) مینامند واگراین وسایل برای شارژکردن باتری مورد استفاده قرارگیرند،غالباً به آنها شارژرگفته میشود. تبدیل برق مستقیم به متناوب “Inversion” نامیده میشود والبته به وسیله ای که این کار را انجام میدهد اینورتر یا برگرداننده میگویند.

معکوس کردن و برگرداندان ولتاژ در یو پی اس

اکثر مردم بدون اینکه حتیconverter را بشناسند آنرا بطور روزانه بکار میبرند درحالیکه inverter فقط در موارد خاص کاربرد دارد.

دلیل آن کاملاً واضح است زیرا اکثر مردم ازبرق متناوب در منازل خود استفاده میکنند وب نابر این بندرت اتفاق می افتد که نیاز به وسیله ای برای تولید برق متناوب ازمنبع برق مستقیم داشته باشند اگرچه اینورتر ها برای محدوده وسیعی ازوسایل کاربرد دارند،

بعنوان مثال به شما اجازه میدهند که وسایل کوچک خانگی خود را که با برق ۲۲۰ ولت متناوب کارمیکنند با استفاده از باتری اتومبیل که از برق مستقیم استفاده میکند بکاراندازید. دردنیای کامپیوتر inverter یکی از اجزای بسیار مهم در دستگاههای تامین برق اضطراری میباشد که انرژی ذخیره شده درباتری را قابل استفاده برای منبع تغذیه کامپیوتر که از برق متناوب استفاده میکند میسازد. مطلب مهمی که باید همیشه در ذهن داشته باشیم اینست که هر بار ما برق مستقیم را به متناوب و یا برعکس تبدیل میکنیم مقداری انرژی بصورت گرما در مولفه ها تلف خواهد شد. بهترین inverter ها راندمانی درحدود ۹۰% دارند .

معنای این حرف اینست که ۱۰%  انرژی بصورت گرما حین فرآیند برگرداندن انرژی تلف میشود. اینورتر های ارزانتر راندمان کمتری دارند. بازدهی converter میتواند به اندازه inverter باشد ولی معمولاً کمتر است و بازدهی آنها بیش از۵۰%  نمیباشد.معنی این حرف اینست که نصف انرژی ورودی بصورت تشعشع گرما تلف میشود.

اصطلاحات یو پی اس (شدت جریان، اختلاف پتانسیل، کیلو ولت آمپر)

اصطلاحات کاربردی در دستگاه یو پی اس

اختصارات در علم برق الکترونیک ولت آمپر واحد توان دستگاه میباشد که میتوان از آن استفاده کرد.یعنی مصرف کننده هایی که میخواهیم به آن وصل کنیم باید محاسبه شده و براساس توان محاسبه شده به ups متصل گردد.اگر توان مصرف کننده ها بیشتر از توان یو پی اس باشد.ادامه مطلب

جریان مستقیم ولتاژ بالا (HVDC)

یا سیستم های انتقال توان جریان مستقیم ولتاژ بالا، با سیستم های معمول جریان متناوب متفاوت است و به عنوان سیستمی برای انتقال توان های زیاد به کار می رود. این سیستم اولین بار در دهه ۱۹۳۰م در سوئد در ASEA به وجود آمد و اولین نصب تجاری آن در اتحاد جماهیر شوروی بین دو شهر مسکو و کاشیرا و نیز یک سیستم ۱۰ تا ۲۰ مگاواتی در گاتلند سوئد در سال ۱۹۵۴م انجام شد.

 یو پی اس
افزایش انتقال AC
در انتقال توان الکتریکی، انتقال به روش DC بیش از آنکه یک قاعده باشد یک استثناست. محیط هایی وجود دارد  یو پی اسکه سیستم انتقال جریان مستقیم در آنها راه حل متعارف است مانند کابل های زیر دریا و در اتصالات بین سیستم های غیر سنکرون (با فرکانس های مختلف). اما برای اغلب شرایط موجود انتقال توان به صورت جریان متناوب کماکان مناسب است.
در تلاش های اولیه انتقال توان الکتریکی، از جریان مستقیم استفاده می شد. اما به هر حال در این دوران سیستم جریان متناوب برای انتقال توان بین نیروگاه ها و ماشین آلات استفاده کننده از این انرژی بر سیستم انتقال توان جریان مستقیم فائق آمد. مزیت اصولی سیستم جریان متناوب قابلیت استفاده از ترانسفورماتور برای انتقال موثر سطح ولتاژ به کار رفته در توان انتقالی بود.
با توسعه ماشین های جریان متناوب موثر، مانند موتور القایی، استفاده از جریان متناوب معمول شد. ( جنگ جریان ها را مشاهده کنید.)

توانایی انتقال سطح ولتاژ یک امر مهم اقتصادی و فنی است که بایستی مد نظر قرار گیرد، با وجود اینکه ولتاژهای بالا سخت تر مورد استفاده واقع می شوند و خطرناک تر هستند، اما سطح جریان پایین تری که برای ولتاژ های بالا مورد نیاز است، برای یک سطح توان معین منجر به استفاده از کابل های کوچکتر و تلفات توان کمتری به صورت گرما می شود. انتقال توان همچنین می تواند توسط ولتاژ حداکثر محدود شود.
یک خط جریان مستقیم که در ولتاژ حداکثری برابر یک خط جریان متناوب کار می کند، می تواند توان بسیار بیشتری را به نسبت جریان متناوب تحت این محدودیت ولتاژ حمل کند. بنابراین با مناسب بودن ولتاژ بالا برای انتقال توان زیاد و مناسب بودن ولتاژ پایین تر برای بهره برداری های صنعتی و داخلی، استفاده از سیستم جریان متناوب به دلیل قابلیت تبدیل سطح ولتاژ آن به سطوح مختلف، برای انتقال توان عام شد.
هیچ وسیله معادلی برای ترانسفورماتور در جریان مستقیم وجود ندارد و بنابراین  یو پی اسبه کارگیری ولتاژ مستقیم بسیار مشکل تر است.

 یو پی اس
مزیت های HVDC بر انتقال جریان متناوب
علی رغم اینکه سیستم انتقال توان جریان متناوب غالب است اما در برخی از کاربردها، HVDC ترجیح داده می شود:

کابل های زیر دریا (مانند کابل ۲۵۰ کیلومتری بین سوئد و آلمان) انتقال توان زیاد در مسافت های بلند از یک نقطه به یک نقطه دیگر و بدون تپ های میانی، برای مثال در مناطق دور افتاده.
افزایش ظرفیت یک شبکه برق در شرایطی که نصب سیم های اضافی مشکل زا یا هزینه بردار است.
امکان انتقال توان بین سیستم های توزیع غیر سنکرون جریان متناوب.
کاهش سطح مقطع سیم کشی و دکل های برق برای یک ظرفیت انتقال داده شده. HVDC می تواند در هر هادی توان بیشتری را انتقال دهد چرا که برای یک توان نامی داده شده ولتاژ ثابت در یک خط جریان مستقیم پایین تر از حداکثر ولتاژ در یک خط جریان متناوب است. این ولتاژ ضخامت عایق و فاصله گذاری بین هادی ها را تعیین می کند.
اتصال نیروگاه های معین به شبکه توزیع
پایدار کردن شبکه های برقی که بیشتر AC هستند.
خطوط بلند زیر دریا دارای ظرفیت خازنی بالایی هستند. این امر موجب می شود که توان جریان متناوب به سرعت و به شدت به صورت تلفات راکتیو و دی الکتریک حتی در کابل های با طول ناچیز تلف شود. HVDC می تواند توان بیشتری در هر هادی انتقال دهد چرا که برای یک توان نامی ولتاژ ثابت در یک خط جریان مستقیم پایین تر از ولتاژ حداکثر یک خط جریان متناوب است. این ولتاژ تعیین کننده ضخامت عایق به کار رفته و فاصله بین هادی هاست. این روش، یو پی اس استفاده از سیم ها و مسیرهای موجود را برای انتقال توان بیشتر در منطقه ای که مصرف توانش بالاتر است را ممکن می سازد و موجب کاهش هزینه ها می شود.

 یو پی اس
مزیت های احتمالی بهداشتی سیستم HVDC بر سیستم جریان متناوب
برای مدتی این گمان وجود داشت که بین میدان القایی یک جریان متناوب (خصوصاً در فرکانس های عمومی خطوط که ۵۰ و ۶۰ هرتز است) و امراض خاصی ارتباط وجود دارد. یکی از خواص سیستم جریان مستقیم این است که دیگر چنین میدان های مغناطیسی متناوبی وجود ندارند. اخیرا در مطالعات آزمایشگاهی نشان داده شده است که چنین میدان های متناوبی منجر به افزایش اشباع رادیکال های آزاد در جرم خون حیوانات می شود (این افزایش می تواند توسط آنتی اکسیدان ها جلوگیری شود). رادیکال های آزاد به عنوان علل احتمالی تعدادی از بیماری ها شناخته شده اند. مزایای این سیستم تنها شامل آنهایی می شود که در معرض خطوط انتقال زندگی می کنند چرا که مشکلات احتمالی میدان های مغناطیسی با انتقال جریان متناوب جریان زیاد و نیز ترانسفورماتورها، موتورها و ژنراتورهای مرتبط با این جریان و حتی وسایل خانگی عادی مانند ماشین اصلاح الکتریکی با سیم پیچ و (خصوصا) مسواک های الکتریکی که به صورت القایی شارژ می شوند، ارتباط دارد.

 یو پی اس
اتصالات بین شبکه های جریان متناوب
با به کار گیری فن آوری تریستور تنها شبکه های جریان متناوب سنکرون را می توان به هم متصل کرد؛ یعنی شبکه هایی که با سرعت یکسان و فاز مشابه نوسان می کنند. بسیاری از مناطقی که مایل به اشتراک گذاشتن توان هایشان هستند دارای شبکه ای غیر سنکرون هستند.
ارتباطات جریان مستقیم به چنین مناطقی این امکان را می دهد که به هم متصل شوند. اما بهر حال سیستم های جریان مستقیمی که بر پایه ترانزیستورهای IGBT هستند اتصال سیستم های غیر سنکرون جریان متناوب را ممکن می سازند و نیز امکان کنترل ولتاژ متناوب و عبور توان راکتیو را فراهم می آورند. حتی یک شبکه سیاه را می توان به این روش به شبکه مورد نظر متصل کرد.

 یو پی اس

سیستم های تولید توان نظیر باتری های فتو ولتایی تولید جریان مستقیم می کنند. توربین های  یو پی اسآبی و بادی تولید جریان متناوبی در فرکانسی وابسته به سرعت شاره ای که آنرا به حرکت در می آورد، می کنند. در حالت اول جریان مستقیم ولتاژ بالا را می توان مستقیما برای انتقال توان به کار برد. در حالت دوم ما دارای یک سیستم غیر سنکرون هستیم که به همین دلیل پیشنهاد می شود که از یک اتصال جریان مستقیم استفاده کنیم. در هر یک از این حالات ممکن است که تشخیص داده شود که انتقال HVDC مستقیما از نیروگاه تولید کننده به کار ببرند به ویژه در صورتی که سیستم در مناطق نامساعد قرار داشته باشد.
به طور کلی یک خط توان HVDC دو منطقه جریان متناوب از شبکه توزیع برق را به هم متصل می کند.

سیستم آلات تبدیل جریان متناوب به جریان مستقیم گران هستند و هزینه قابل توجهی را در انتقال توان به خود اختصاص می دهند.
تبدیل از جریان متناوب به جریان مستقیم را یک سو سازی و تبدیل از جریان مستقیم به جریان متناوب را اینورژن می نامند. برای فاصله ای بیش از یک فاصله معین ( که حدود ۵۰ کیلومتر برای کابل های زیر دریا و احتمالا ۶۰۰ تا ۸۰۰ کیلومتر برای کابل های هوایی است) کاهش هزینه ناشی از به کار گیری تجهیزات الکترونیک قدرت برای سیستم جریان مستقیم از هزینه این تجهیزات بیشتر است و عملا به کاربری این سیستم در خطوط هوایی بسیار بلند مقرون به صرفه است. چنین فاصله ای که در آن هزینه ها با درآمد ها برابر می شود را یک فاصله یربه یر (مساوی) می نامند. علم الکترونیک همچنین اجازه این را به ما می دهد که توسط کنترل اندازه و جهت جریان توان، شبکه برق را مدیریت کنیم. بنابراین یک مزیت اضافی وجود ارتباطات HVDC پایداری افزایش یافته بالقوه در شبکه انتقال است.

 یو پی اس
یک سو سازی و اینورت کردن
اجزا یک سو کننده و اینورت کننده
سیستم های اولیه از یک سو سازهای آرک ـ جیوه استفاده می کردند که قابل اعتماد نبودند. برای اولین بار شیرهای تریستوری در ۱۹۶۰م به کار گرفته شدند. تریستور یک نیمه هادی حالت جامد مشابه دیود است اما با یک ترمینال کنترلی اضافی که از آن در یک لحظه معین در سیکل جریان متناوب برای دادن فرمان به تریستور استفاده می شود. امروزه از ترانزیستور دو قطبی گیت عایق شده (IGBT) نیز به جای تریستور استفاده می شود.
به دلیل اینکه ولتاژ در HVDC گاهاً حول ۵۰۰ کیلو ولت است و از ولتاژ شکست دستگاه های نیمه هادی یو پی اس بیشتر است، مبدل های HVDC با استفاده از تعداد زیادی نیمه هادی ساخته می شوند که سری شده اند. با این کار عملا ولتاژی که روی هر نیمه هادی می افتد کاهش می یابد و می توان از نیمه هادی های با ولتاژ شکست پایین تر که ارزان تر نیز هستند استفاده کرد.
برای دادن فرمان به تریستور ها نیاز به یک مدار فرمانی داریم که با ولتاژی پایین عمل می کند و می بایست از مدار ولتاژ بالای سیستم جدا شود. این کار معمولا به صورت اپتیکی یا نوری انجام می شود. در یک سیستم کنترل هایبرید تجهیزات الکترونیکی ولتاژ پایین پالس های نوری را در طول فیبرهای نوری به بخش ولتاژ بالا کنترل الکترونیکی ارسال می کنند.
یک عنصر کلید زنی کامل بدون در نظر گرفتن ساختارش عموما یک شیر خوانده می شود.
سیستم های یک سو سازی و اینورتری
یک سوسازی و اینورژن اساسا یک مکانیزم را دارا هستند. بسیاری از پست های یو پی اس برق بگونه ای ساخته شده اند تا بتوانند هم به صورت یک سوساز و هم به صورت اینورتر عمل کنند.
در سر جریان متناوب یک دسته از ترانسفورماتورها قرار داده می شوند که اغلب سه ترانسفورماتور تک فاز جدا از هم هستند که ایستگاه مورد نظر را از تغذیه جریان متناوب جدا می کنند تا بتوانند یک زمین محلی را ایجاد کنند و نیز تا یک ولتاژ مستقیم نهایی صحیح را تضمین کنند. سپس خروجی این سه ترانسفورماتور به یک پل یک سوساز شامل تعدادی شیر وصل می شود. ساختار اصلی شامل شش شیر است که هر سه شیر هر سه فاز را به یکی از دو سر ولتاژ مستقیم وصل می کند. اما به هر حال در این سیستم، به دلیل اینکه هر ۶۰ درجه یک تغییر فاز داریم یا به عبارتی یک ولتاژ شش پالسه داریم، هارمونیک های این ولتاژ هم قابل ملاحضه اند.

 یو پی اس

یک ساختار بهبود یافته این سیستم از ۱۲ شیر (که اغلب به عنوان سیستم ۱۲ شیره شناخته شده) استفاده می کند. در این سیستم جریان متناوب ورودی را قبل از ترانسفورماتور ها به دو بخش تقسیم می کنیم. یک بخش را به یک اتصال ستاره از ترانسفورماتورها اعمال می کنیم و بخش دیگر را به یک اتصال مثلث از ترانسفورماتورها در نظر می گیریم. در این صورت شکل موج خروجی این دو ترانسفورماتور سه فاز با هم ۳۰ درجه اختلاف فاز خواهد داشت. حال ۱۲ شیری که داریم هر یک از این دو دسته سه فاز را به ولتاژ مستقیم وصل می کنند و در این صورت هر ۳۰ درجه یک تبدیل فاز خواهیم داشت، یا یک ولتاژ ۱۲ پالسه خواهیم داشت که این به معنی کاهش قابل ملاحضه هارمونیک ها است.
علاوه بر تغییر دادن ترانسفورماتورها و شیرها، می توان توسط اجزا راکتیو، پسیو و مقاومتی مختلفی برای حذف هارمونیک های موجود بر روی ولتاژ مستقیم استفاده کرد.

 یو پی اس
نگرش کلی
قابلیت کنترل پذیری عبور جریان از طریق یک سو سازها و اینورتورهای HVDC ، کاربرد آنها در اتصالات بین شبکه های غیر سنکرون و کاربرد آنها در کابل های کارای زیر دریا به این معنی است که کابل های HVDC اغلب در مرزهای ملی و برای مبادلات توان به کار می برند.
نیرو گاه های بادی داخل آب نیز نیازمند کابل های زیر دریا هستند و توربین های آنها نیز غیر سنکرون. از خطوط انتقال HVDC می توان در برقراری اتصالات بسیار بلند بین تنها دو نقطه استفاده کرد، برای مثال اطراف اجتماعات دور افتاده سیبری، کانادا و شمال اسکاندیناوی که یو پی اس در این صورت کاربرد این سیستم که دارای هزینه های کمتر از خطوط معمولی است منطقی به نظر می رسد.

 یو پی اس
ساختار سیستم
یک اتصال HVDC که در آن دو مبدل AC به DC در یک ساختمان به کار رفته اند و انتقال به صورت HVDC تنها بین خود ساختمان وجود دارد به عنوان یک اتصال HVDC پشت به پشت معروف است. این یک ساختار عمومی برای اتصال دو شبکه غیر سنکرون است.

معمول ترین ساختار یک اتصال HVDC یک اتصال ایستگاه به ایستگاه است که در آن دو ایستگاه اینورتر / یک سو ساز توسط یک اتصال اختصاصی HVDC به هم متصل می شوند. این اتصالی است که به صورت زیادی در اتصال شبکه های غیر سنکرون در خطوط انتقال بلند و در کابل های زیر دریا به کار می رود.
سیستم انتقال توان چند ترمیناله (که از سه ایستگاه یا بیشتر استفاده می کند) HVDC هم به علت هزینه های بالای ایستگاه های مبدل و اینورتر، از دو سیستم دیگر کمتر مورد استفاده قرار می گیرد. ساختار ترمینال های چندگانه می تواند سری یا موازی و یا هیبرید (ترکیبی از سری و موازی) باشد. از ساختار موازی برای ایستگاه های با ظرفیت بالا استفاده می شود در حالی که از ساختار سری برای ایستگاه های با ظرفیت کمتر استفاده می شود.
سیستم های تک قطبی نوعا ۱۵۰۰ مگا وات را حمل می کنند.

یک اتصال دو قطبی از دو سیم استفاده می کند، یکی در پتانسیل بالای مثبت و دیگری در پتانسیل بالای منفی. این سیستم دارای دو مزیت نسبت به اتصال تک قطبی است:
اول اینکه می تواند توانی معادل دو برابر سیستم تک قطبی حمل کند که نوعا برابر ۳۰۰۰ مگا وات است ( جریان یکی است اما اختلاف پتانسیل بین سیم ها دو برابر است).
دوم اینکه این سیستم می تواند با وجود خطا در یکی از سیم ها، و با استفاده از زمین به عنوان یک مسیر بازگشت به کار خود ادامه دهد.

اتصالاتHVDC چند ترمیناله که بیش از دو نقطه را به هم متصل می کنند ممکن یو پی اس هستند اما بندرت یافت می شوند. یک مثال از این اتصالات سیستم ۲۰۰۰ مگاواتی Hydro Quebec است که در سال ۱۹۹۲ م افتتاح شد

جریان DC و AC

جریان(dc)
تعریف

جریان مستقیم (DC یا جریان پیوسته)، عبور پیوسته جریان الکتریسیته از یک هادی نظیر یک سیم از پتانسیل بالا به پتانسیل کم است. در جریان مستقیم، بار الکتریکی همواره در یک جهت عبور می کند که این امر جریان مستقیم را از جریان متناوب (AC) متمایز می کند.

یو پی اس

در واقع جریان مستقیم ابتدا برای انتقال توان الکتریکی پس از کشف تولید الکتریسیته در اواخر قرن 19 توسط توماس ادیسون بکار رفت. امروزه استفاده از جریان مستقیم برای این منظور غالباً کنار گذاشته شده است، چرا که جریان متناوب (که توسط نیکلا تسلا کشف و توسعه داده شده ) برای انتقال در طول خطوط بلند بسیار مناسب تر است (جنگ جریان ها را مشاهده کنید). هنوز هم انتقال توان DC برای اتصال شبکه های توان AC با فرکانس های مختلف به هم، بکار می رود.

DC

 عموماً در بسیاری از کاربرد های کم ولتاژ استفاده می شود، خصوصاً در جایی که انرژی از طریق باتری ها تامین می شود که تنها می توانند ولتاژ DC تولید کنند. اکثر سیستم های خودکار، از DC استفاده می کنند. اگرچه که ژنراتور یک وسیله AC است که از یک یکسو کننده برای تولید DC استفاده می کند. اغلب مدارات الکترونیکی نیاز به یک منبع تغذیه DC دارند. با وجود اینکه DC مخفف جریان مستقیم است اما کلاً به ولتاژهای با پلاریته ثابت، DC گفته می شود. برخی از انواع DC دارای تغییرات ولتاژ زیادی هستند، مانند خروجی دست نخورده یک یکسوساز. با عبور این خروجی از یک فیلتر RC پایین گذر، ولتاژ پایدار تری حاصل می شود.

معمولاً به دلیل ولتاژهای بسیار پایین بکار رفته در سیستم های جریان مستقیم، نصب آنها نیازمند پریزها، کلیدها و لوازم ثابت متفاوتی از آنچه که برای جریان متناوب به کار می رود است. در یک وسیله جریان مستقیم این نکته بسیار مهم است که پلاریته آنرا معکوس وصل نکنیم، مگر اینکه وسیله داری یک پل دیودی برای اصلاح این امر باشد. (که اکثر دستگاه های عمل کننده با باتری این امکان را ندارند.)

امروزه (سال 2000م) گرایشاتی در جهت سیستم های انتقال جریان مستقیم ولتاژ بالا (HVDC) ایجاد شده است. همچنین DC در سیستم های برق خورشیدی که توسط باتری های خورشیدی تغذیه می شوند، به کارمی رود.جریان

متناوب(AC)

تعریف
یک جریان متناوب (AC ) جریان الکتریکی ای است که در آن اندازه جریان به صورت چرخه ای تغییر می کند، بر خلاف جریان مستقیم که در آن اندازه جریان مقدار ثابتی می ماند. شکل موج معمول یک مدار AC عموماً یک موج سینوسی کامل است چرا که این شکل موج منجر به انتقال انرژی به موثرترین صورت می شود. اما به هر حال در کاربردهای خاص، شکل موج های متفاوتی نظیر مثلثی یا مربعی نیز استفاده می شود.

تاریخچه
توان الکتریکی با جریان متناوب، نوعی از انرژی الکتریکی است که برای تغذیه تجاری الکتریسیته به عنوان توان الکتریکی، از جریان متناوب استفاده می کند. ویلیام استنلی جی آر کسی است که یکی از اولین سیم پیچ های عملی را برای تولید جریان متناوب طراحی کرد. طراحی وی یک صورت ابتدایی ترانسفورماتور مدرن بود که یک سیم پیچ القایی نامیده می شد. از سال 1881م تا 1889م سیستمی که امروزه استفاده می شود، توسط نیکلا تسلا، جرج وستینگهاوس، لوییسین گاولارد، جان گیبس و الیور شالنجر طراحی شد.

سیستمی که توماس ادیسون برای اولین بار برای توزیع تجاری الکتریسیته بکار برد، به دلیل استفاده از جریان مستقیم محدودیت های داشت که در این سیستم برطرف شد.
اولین انتقال جریان متناوب در طول فواصل بلند در سال 1891م نزدیک تلورید کلورادو اتفاق افتاد که چند ماه بعد در آلمان ادامه پیدا کرد. توماس ادیسون به علت اینکه حقوق انحصاری اختراعات متعددی را در فن آوری جریان مستقیم «DC» داشت، استفاده از جریان مستقیم را، به شدت حمایت می کرد اما در نهایت جریان متناوب به عرصه استفاده عمومی آمد (جنگ جریان ها را مشاهده کنید).

یوپی اس
چارلز پروتیوس استینمتز از جنرال الکتریک بسیاری از مشکلات مرتبط با تولید الکتریسیته و انتقال آن را با استفاده از جریان متناوب حل کرد.

توزیع برق و تغذیه خانگی
بر خلاف جریان DC، جریان AC را می توان توسط یک ترانسفورماتور به سطوح مختلف ولتاژی انتقال داد. هر چه میزان ولتاژ افزایش یابد، انتقال توان هم موثرتر صورت خواهد گرفت. افزایش میزان قابلیت انتقال توان به علت قانون اهم است، تلفات انرژی الکتریکی وابسته به عبور جریان از یک هادی است. تلفات توان به علت جریان توسط رابطه P=I^2*R محاسبه می شود، بنابراین اگر جریان دو برابر شود، تلفات چهار برابر خواهد شد.

با استفاده از ترانسفورماتور، ولتاژ را می توانیم به یک ولتاژ بالا افزایش دهیم تا بتوانیم توان را در طول فواصل بلند در سطح جریان پایین انتقال داده و در نتیجه تلفات کاهش یابد. سپس می توانیم ولتاژ را دوباره به سطحی که برای تغذیه خانگی بی خطر باشد، کاهش دهیم.

باتری یو پی اس

تولید الکتریکی سه فاز بسیار عمومی است و استفاده ای موثرتر از ژنراتورهای تجاری را برای ما ممکن می سازد. انرژی الکتریکی توسط چرخش یک سیم پیچ داخل یک میدان مغناطیسی در ژنراتورهای بزرگ و با هزینه بالا ایجاد می شود. اما به هر حال جای دادن سه سیم پیچ جدا روی یک محور (بجای یک سیم پیچ)، هم نسبتاً آسان و هم مقرون به صرفه است. این سیم پیچ ها روی محور ژنراتورها نصب شده اند اما از نظر فیزیکی جدا اند و دارای یک اختلاف زاویه 120 درجه ای نسبت به هم هستند. سه شکل موج جریان تولید می شود که دارای اختلاف فاز 120 درجه ای نسبت به هم، اما اندازه های یکسان هستند.

توزیع الکتریسیته سه فاز بطور وسیعی در ساختمان های صنعتی و توزیع الکتریسیته تک فاز در محیط های خانگی بکار می رود. نوعاً یک ترانسفورماتور سه فاز ممکن است مسیرهای مختلفی را با یک فاز متفاوت برای بخش های مختلف هر مسیر، تغذیه کند.
سیستم های سه فاز به گونه ای طراحی شده اند که در محل بار متعادل باشند، اگر باری به طور صحیح متعادل شده باشد، جریانی از نقطه خنثی عبور نخواهد کرد. این بدین مفهوم است که می توان جریان را تنها با سه کابل به جای شش کابل که در غیر این صورت مورد نیاز است، انتقال داد. گفتنی است که برق سه فاز در واقع نوعی از سیستم چند فازه است.

تعمیر یو پی اس

در بسیاری از موارد تنها یک تک فاز برای تغذیه ی روشنایی خیابان ها یا مصرف کننده های خانگی مورد نیاز است. وقتی که یک سیستم توان الکتریکی سه فاز داریم، یک کابل چهارمی که خنثی است را در توزیع خیابانی قرار می دهیم تا برای هر خانه یک مدار کامل را فراهم کنیم «یعنی هر خانه می تواند از یکی از کابل های فاز و کابل خنثی برای مصرف استفاده کند». خانه های مختلف در خیابان از فازهای مختلف استفاده می کنند یا وقتی که مصرف کننده های زیادی به سیستم متصلند، آنها را به صورت مساوی در طول سه فاز پخش می کنند تا بار روی سیستم متعادل شود. بنابراین کابل تغذیه هر خانه معمولاً تنها شامل یک هادی فاز و نول و احتمالاً با یک پوشش آهنی زمین شده، است.

برای اطمینان یک سیم سومی هم اغلب بین هر یک از وسایل الکتریکی در خانه و صفحه سوییچ الکتریکی اصلی یا جعبه فیوز وصل می شود. این سیم سوم در انگلستان و اکثر کشورهای انگلیسی زبان سیم earthو در آمریکا سیم groundخوانده می شود. در صفحه سوییچ اصلی سیم earth را به سیم نول و نیز به یک تیرک متصل به زمین یا هر نقطه earthدر دسترس (برای آمریکایی ها نقطه ground ) نظیر لوله آب، متصل می کنند.

در صورت وقوع خطا، سیم زمین می تواند جریان کافی را برای راه اندازی یک فیوز و جدا کردن مدار دارای خطا، از خود عبور دهد. همچنین اتصال زمین به این مفهوم است که ساختمان مجاور دارای ولتاژی برابر ولتاژ نقطه خنثی است.

یو پی اس apc

شایع ترین نوع خطای الکتریکی (شوک) در صورتی رخ می دهد که شی ای (معمولاً یک نفر) بطور تصادفی بین یک هادی فاز و زمین، مداری تشکیل دهد. در این صورت یک جریان خطا از فاز به زمین ایجاد می شود که به جریان پس ماند معروف است. یک مدار شکن جریان پس ماند طراحی شده است تا چنین مشکلی را شناسایی کند و مدار را قبل از اینکه شوک الکتریکی منجر به مرگ شود، قطع کند.

در کاربرد های صنعتی (سه فاز) بسیاری از قسمت های مجزای سیستم خنثی به زمین متصلند که این امر موجب می شود تا جریان های کوچک زمین، که همواره بین یک ژنراتور و یک مصرف کننده (بار) در حال عبور هستند را متعادل کند. این سیستم زمین کردن این اطمینان را به ما می دهد که اگر خطایی رخ دهد، جریانی که از نقطه خنثی می گذرد به یک سطح قابل کنترل محدود شده باشد. این روش به سیستم خنثی زمین چندگانه معروف است.

فرکانس های AC در کشورها
اکثر کشورهای جهان سیستم های الکتریکی شان را روی یکی از دو فرکانس 60 و 50 هرتز استاندارد کرده اند. لیست کشورهای 60 هرتز که اغلبشان در دنیای جدید قرار دارند کوتاه تر است اما نمی توان گفت که 60 هرتز کمتر معمول است.

فروش یو پی اس

کشورهای 60 هرتز عبارتند از: ساموای امریکا، آنتیگوا و باربودا، آروبا، باهاماس، بلیز، برمودا، کانادا، جزایر کیمان، کلمبیا، کاستاریکا، کوبا، جمهوری دمونیکن، السالوادور، پلینسیای فرانسه، گوام، گواتمالا، گیانا، هاییتی، هندوراس، کره جنوبی، لیبریا، جزایر مارشال، مکزیک، میکرونسیا، مونت سرات، نیکاراگویه، جزایر ماریانای شمالی، پالایو، پاناما، پرو، فیلیپین، پرتوریکو، ساین کیتس و نویس، سورینام، تایوان، ترینیداد توباگو، جزایر ترکس و کیاکوس، ایالات متحده، ونزولا، جزایر ویرجین، جزیره ویک.

این کشورها دارای سیستم هایی با فرکانس مختلط 60 و 50 هرتز اند: بحرین، برزیل(اغلب فرکانس 60) ، ژاپن (فرکانس 60 هرتز در زمان حضور غربی ها).

اغلب کشورها بگونه ای استاندارد تلویزیون شان را انتخاب کرده اند که با فرکانس خطوط برق شان متناسب باشد. استاندارد NTSCبرای کار با فرکانس خطوط برق 60 هرتز طراحی شده است در حالیکه PALو SECAMبرای فرکانس خطوط 50 هرتز طراحی شده است اما نسخه 60 هرتز PALهم وجود دارد، برای مثال در برزیل PAL-Mارایه دهنده وضوح PALو چشمک تصویر پایین NTSCاست.

عموماً این مطلب پذیرفته شده است که نیکلا تسلا فرکانس 60 هرتز را به عنوان کمترین فرکانسی که منجر به عدم بروز پدیده چشمک زنی قابل مشاهده در روشنایی های خیابان ها می شد، انتخاب کرد. توان 25 هرتز بیش از آنی که در آبشار نیاگارا تولید شود، در اونتاریو و آمریکای شمالی استفاده می شده است.
هنوز هم ممکن است برخی از ژنراتورهای 25 هرتز در آبشار نیاگارا مورد استفاده واقع شوند. فرکانس پایین طراحی موتورهای الکتریکی کم سرعت را ساده می سازد و می توان آنرا به صورت بهتر و موثرتری تولید کرده و انتقال داد، اما منجر به چشمک زنی قابل ملاحظه ای در روشنایی ها می شود. کاربرد های ساحلی و دریایی ممکن است گاهاً فرکانس 400 هرتز را به علت مزیت های مختلف فنی مورد استفاده قرار دهند. برق 67/16 هرتزی هم هنوز در برخی از سیستم های راه آهن اروپا مانند سوئد به چشم می خورد.

ریاضیات ولتاژهای AC
جریان های متناوب عموما با ولتاژهای متناوب مرتبط اند. یک ولتاژ AC، V را می توان به صورت ریاضی مانند یک تابع از زمان توسط معادله زیر نمایش داد:

که در آن A، اندازه بر حسب ولت است (همچنین ولتاژ پیک خوانده می شود)
ω، فرکانس زاویه ای بر حسب رادیان بر ثانیه و t، زمان بر حسب ثانیه است.
به دلیل اینکه فرکانس زاویه ای برای ریاضی دانان بیش از مهندسین جذاب است، این معادله معمولاً به صورت زیر نوشته می شود:

قیمت یو پی اس
که در آن f، فرکانس بر حسب هرتز است.
مقدار پیک به پیک یک ولتاژ AC به صورت اختلاف بین پیک مثبت و منفی این ولتاژ تعرف می شود. به دلیل اینکه حداکثر ولتاژ sin(x) ، 1+ و حداقل مقدار آن 1- است، یک ولتاژ AC بین +A و A – نوسان می کند. بنابراین ولتاژ پیک به پیک که به صورت VP-P نوشته می شود، برابر (+A)-(-A) = 2×Aخواهد بود.
اندازه یک ولتاژ AC معمولاً به صورت یک مقدار ریشه میانگین مجذور (rms) بیان می شود که Vrms نوشته می شود. برای یک ولتاژ سینوسی داریم:

Vrms در محاسبه توانای که توسط یک بار الکتریکی مصرف شده، مفید است. اگر یک ولتاژ مستقیم VDC یک توان P را به یک بار داده شده ارایه دهد، آنگاه یک ولتاژ متناوب با Vrms در صورتی همان توان را به بار مشابه ارایه می دهد که Vrms = VDC.
برای توضیح این مفهوم، خطوط برق 240 ولتی متناوب را در انگلیس تصور کنید. دلیل نام این خطوط این است که مقدار rms آن (حداقل بطور نامی) 240 ولت است. بدین مفهوم که این خطوط همان اثر گرمایی را دارند که ولتاژ DC 240 ولتی دارد. برای محاسبه ولتاژ پیک (اندازه)، می توانیم معادله بالا را به این معاله تغییر دهیم:

یو پی اس

برای ولتاژ AC 240 ولتی، ولتاژ پیک یا A برابر 240 V × √2 = 339 V (تقریبا) است. ولتاژ پیک به پیک خطوط 240 ولتی حتی از این هم بیشتر است: 2 × 240 V × √2 = 679 V (تقریبا). اتحادیه اروپا (شامل انگلیس) اکنون یک تغذیه 230 ولتی و 50 هرتزی را بین کشورهای خود، هم آهنگ کرده است